
A dynamic microbial sulfur cycle in a serpentinizing
continental ophiolite

Mary C. Sabuda ,1†,‡ William J. Brazelton,2

Lindsay I. Putman,1,3 Tom M. McCollom,4

Tori M. Hoehler,5 Michael D. Y. Kubo,5,6

Dawn Cardace7 and Matthew O. Schrenk1,3*
1Department of Earth and Environmental Sciences,
Michigan State University, East Lansing, MI, 48824.
2Department of Biology, University of Utah, Salt Lake
City, UT, 84112.
3Department of Microbiology and Molecular Genetics,
Michigan State University, East Lansing, MI, 48824.
4Laboratory for Atmospheric and Space Physics, UCB
600, University of Colorado-Boulder, Boulder, CO,
80309.
5Exobiology Branch, NASA Ames Research Center,
Moffett Field, CA, 94035.
6SETI Institute, Mountain View, CA, 94043.
7Department of Geosciences, University of Rhode
Island, Kingston, RI, 02881.

Summary

Serpentinization is the hydration and oxidation of
ultramafic rock, which occurs as oceanic lithosphere
is emplaced onto continental margins (ophiolites),
and along the seafloor as faulting exposes this
mantle-derived material to circulating hydrothermal
fluids. This process leads to distinctive fluid chemis-
tries as molecular hydrogen (H2) and hydroxyl ions
(OH−) are produced and reduced carbon compounds
are mobilized. Serpentinizing ophiolites also serve as
a vector to transport sulfur compounds from the sea-
floor onto the continents. We investigated hyper-
alkaline, sulfur-rich, brackish groundwater in a
serpentinizing continental ophiolite to elucidate the
role of sulfur compounds in fuelling in situ microbial
activities. Here we illustrate that key sulfur-cycling
taxa, including Dethiobacter, Desulfitispora and
‘Desulforudis’, persist throughout this extreme

environment. Biologically catalysed redox reactions
involving sulfate, sulfide and intermediate sulfur
compounds are thermodynamically favourable in the
groundwater, which indicates they may be vital to
sustaining life in these characteristically oxidant- and
energy-limited systems. Furthermore, metagenomic
and metatranscriptomic analyses reveal a complex
network involving sulfate reduction, sulfide oxidation
and thiosulfate reactions. Our findings highlight the
importance of the complete inorganic sulfur cycle in
serpentinizing fluids and suggest sulfur biogeochem-
istry provides a key link between terrestrial ser-
pentinizing ecosystems and their submarine
heritage.

Introduction

Serpentinization is a geochemical reaction that occurs
following the exposure of ultramafic rock to hydrothermal
fluid. This occurs in numerous locations around the world
as oceanic lithosphere is subducted into the mantle,
altered in mid-ocean ridge settings, or is emplaced onto
continents in the form of ophiolites (Dilek and Furnes,
2011; Morrill et al., 2013). Detachment faulting on the
ocean floor can also uplift ultramafic rock and facilitate
the interaction of water and rock at elevated tempera-
tures (Schwarzenbach et al., 2016). At temperatures
below ~300�C, the pH of these systems ranges from 7.5
to greater than 12.5. Subsurface serpentinizing fluids,
such as those at the Coast Range ophiolite in California
and the Semail ophiolite in Oman, are often dysoxic to
suboxic [2.36–0.09 mg L−1 dissolved oxygen (DO) at
Coast Range Ophiolite Microbial Observatory (CROMO)]
due to their increased isolation from atmospheric and sur-
face processes with depth (Morrill et al., 2013; Schrenk
et al., 2013; Rempfert et al., 2017; Twing et al., 2017;
Fones et al., 2019). Serpentinizing springs exposed to
the atmosphere can host gradients of oxygen from anoxic
at the source to fully oxygenated and therefore more
energy-rich as water moves downstream (Woycheese
et al., 2015). Serpentinization-influenced microbial eco-
systems have stimulated a great deal of interest in recent
years following the discovery of the Lost City Hydrother-
mal Field (LCHF) near the Mid-Atlantic Ridge and the
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exploration of numerous serpentinizing ophiolite com-
plexes (Brazelton et al., 2012; Schrenk et al., 2013; Tiago
and Veríssimo, 2013; Suzuki et al., 2014). Microorgan-
isms within these habitats are able to metabolize prod-
ucts of serpentinization (Lang et al., 2012; Quéméneur
et al., 2014) and facilitate biogeochemical cycling of the
limited substrates (i.e., hydrogen, methane, acetate and
formate) and electron acceptors (nitrate, sulfate, iron,
etc.) that are present therein. Owing to their marine ori-
gins, some ophiolite-hosted aquifers retain ancient sea-
water, which contributes salinity and dissolved sulfate to
the chemical inventory (Fig. 1; Supporting Information
Tables S1 and S2) and may influence microbial commu-
nity structure (Schwarzenbach et al., 2012).
Previous studies have identified some evidence of

organisms capable of metabolizing sulfur compounds
within serpentinizing ecosystems through pathways that
include dissimilatory sulfate reduction, polysulfide reduc-
tion and sulfide oxidation (Brazelton et al., 2006; Crespo-
Medina et al., 2014; Lang et al., 2018). Organisms similar
to Dethiobacter were enriched when anoxic ser-
pentinizing groundwater was amended with thiosulfate
and sulfide (Crespo-Medina et al., 2014). At Cabeço de
Vide in Portugal, a high pH aquifer influenced by
serpentinization, microbial communities and functional

gene markers suggest that inorganic sulfur metabolisms
(e.g., aprA) play a key role in the subterranean ecosys-
tem (Tiago and Veríssimo, 2013). However, the contribu-
tions of these individual metabolic processes to bulk
ecosystem function have not been well defined. Here, we
use a combination of thermodynamic and metagenomic
approaches to address the roles of inorganic sulfur in oxi-
dized (sulfate), reduced (sulfide) and intermediate (thio-
sulfate, sulfite, polysulfides, elemental sulfur) oxidation
states in stimulating microbial metabolic activity within a
serpentinite-hosted aquifer at CROMO in California,
USA. Gibbs energy yields for catabolic reactions involv-
ing dissolved sulfur compounds were calculated using
the measured geochemistry of CROMO groundwater
(Amend and Shock, 2001; Cardace and Hoehler, 2009).
We then quantified the abundance and expression of key
sulfur cycling genes in metagenomes and
metatranscriptomes from resident microbial communities.
These genes and their phylogenetic affiliation were used
to construct a model of sulfur cycling in the deepest, most
saline groundwater well at the site, CSWold. Finally, the
genetic potential for sulfur cycling at CROMO is com-
pared to metagenomes from other serpentinization-
influenced sites including the Voltri Massif in Italy and the
LCHF to investigate the distribution of commonly

Fig. 1. Sodium and chloride values (μM) are plotted for published subaerial serpentinizing systems worldwide (see Supporting Information
Table S2), with a seawater dilution line (black) plotted for reference. CROMO wells plot as yellow circles.
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occurring processes. These data were used to explore
the idea that microbial sulfur cycling at CROMO repre-
sents part of a continuum of processes that occur as
serpentinites transition between marine and terrestrial
environments.

Results and discussion

Aqueous geochemistry and microbial community
patterns at CROMO

CROMO consists of eight monitoring wells drilled into the
northern Coast Range ophiolite in 2011 along with four
pre-existing wells. The wells access a dysoxic (0.66–-
2.96 mg O2 L−1) to suboxic (0.03–0.66 mg O2 L−1) aqui-
fer containing some of the most saline serpentinite-
hosted groundwater characterized to date (Fig. 1,
Supporting Information Tables S1 and S2). Earlier

hydrologic studies have suggested the presence of
perched aquifers at CROMO, which isolate fluid volumes
at specific depths from one another (Ortiz et al., 2018).
The wells are geographically split into two clusters, Core
Shed Wells (CSW) and Quarry Valley wells (QV, N08)
located 1.2 km apart (Cardace et al., 2013). The deepest
wells (> 27 m) access microbial communities minimally
influenced by surficial processes (i.e., meteoric water,
soil organics, etc.). Work by Peters (1993) revealed that
Coast Range ophiolite groundwater is partially derived
from Cretaceous seawater that experienced varying
extents of water–rock interaction. The deepest wells host
fluid salinities an order of magnitude higher than the
shallowest wells and are elevated (e.g., 81.9 mM Cl− and
73.9 mM Na+ in CSWold) compared to most measured
continental serpentinizing sites such as the Cedars
(1.49 mM Cl− and 1.98 mM Na+ at site BS5; Morrill et al.,
2013) and the Semail ophiolite (21.1 mM Cl− and
22.1 mM Na+ at site Yellowstone du pauvre; Chavagnac
et al., 2013; Supporting Information Fig. S1, Table S2).
Deeper wells plot along the Na+-Cl− seawater dilution line
rather than the 1:1 halite dissolution line (Supporting
Information Fig. S1), which suggests the deepest wells
sample groundwater with a dilute seawater signature
(Hem, 1985; Alcalá and Custodio, 2008; Katz et al.,
2011). In the deepest well, CSWold (depth = 76.2 m),
some of the most abundant organisms as identified by
16S rRNA gene sequencing are closely related to
halotolerant and halophilic taxa, including members of
the genera Salinarimonas, Desulfitispora and Nitriliruptor.
Br−:Cl− ratios also parallel the seawater dilution trend but
offset to slightly higher values (Supporting Information
Fig. S2), consistent with the results of Peters (1993). The
offset suggests that some Cl− was removed from the fluid
at depth, possibly through substitution of Cl− for hydroxyl
groups in serpentine or precipitated in Cl-bearing min-
erals such as iowaite (Heling and Schwarz, 2007).

The seawater-influenced groundwater chemistry is coinci-
dent with several other physical–chemical parameters that
co-vary with microbial community composition including
oxidation–reduction potential, conductivity, depth, dissolved
inorganic carbon (DIC) and pH (Fig. 2; Supporting Informa-
tion Table S3). Pairwise Pearson correlation analyses
between geochemical and microbiological (16S rRNA gene
amplicon) data from the CROMO wells demonstrated that
members of Betaproteobacteriales and Erysipelotrichales
(Firmicutes) are positively correlated with the concentration
of hydrogen sulfide (HS− ranges 1.00–23.75 μM;
p values < 0.05; Supporting Information Tables S1 and S3–
S5). The sulfur-reducing taxa Dethiobacter, Desulfitispora,
Clostridiales Family XIV and ‘Desulforudis’ also correlate
with depth and conductivity (Fig. 2; Supporting Information
Table S5; p values < 0.05), and well depth correlates with
sodium and conductivity (Supporting Information Table S6;

Fig. 2. A. Non-metric multidimensional scaling (NMDS) plot of
CROMO well 16S rRNA gene amplicon relative abundances using
the Morisita Horn distance metric, with correlations to select geo-
chemical data plotted as overlying vectors (p values ≤ 0.05). Wells
clustered closely are more similar in microbial community structure
than those further away.
B. Bar chart showing 16S rRNA relative gene abundance (%) of two
genera, Dethiobacter and Desulforudis, versus conductivity
(μS cm−1) in CROMO wells. Wells are ordered from lowest to highest
conductivity.
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p values < 0.05). While microbial populations in highly
reducing, hyperalkaline groundwater are generally limited
by the lack of more energy-rich electron acceptors (oxidants
such as O2, NO

−
3 and Mn; McCollom and Seewald, 2013;

Twing et al., 2017), the presence of dissolved sulfate
here provides a resource that could be exploited by
microbial communities and stimulate a range of second-
ary metabolisms. Overall, the cycling of sulfur in this sys-
tem and in similar serpentinizing systems allows for the
recycling and regeneration of limited oxidants.

Biological sulfate reduction ‘kick-starts’ the sulfur cycle
in serpentinizing ophiolites

Sulfate sourced from ancient seawater constitutes the
most abundant dissolved sulfur compound at CROMO as
demonstrated both here and through earlier investiga-
tions (Peters, 1993). Sulfate in seawater is 28 mM, and
sulfate ranges between 28 and 392 μM at CROMO
(Supporting Information Tables S1 and S3) and is ele-
vated in other relatively saline ophiolites around the world
(Neal and Shand, 2002; Cipolli et al., 2004; Chavagnac
et al., 2013). Thermodynamic calculations for a range of
biologically catalysed sulfate reduction reactions in
CROMO’s highly reducing, alkaline groundwater demon-
strate favourable conditions for microbial sulfate reduc-
tion coupled to a range of potential fuels including
hydrogen, methane and acetate (Schrenk et al., 2013;
Supporting Information Tables S7 and S8). For example,
sulfate reduction coupled to acetate and formate in all
wells, and to hydrogen in most wells, yields sufficient
Gibbs energy (> 70 kJ mol−1) to generate ATP
(adenosine 5’-triphosphate; Schink, 1997). Sulfate reduc-
tion coupled to methane oxidation (anaerobic oxidation of
methane (AOM)) is a highly favourable process in terms
of bulk energetic yields per litre of groundwater, espe-
cially at depth (Fig. 3; Supporting Information Tables S7
and S8). In the four deepest wells, this reaction yields
(per litre of groundwater) values of 6500 mJ L−1 in
CSWold, 13,000 mJ L−1 in CSW1.5, 2100 mJ L−1 in
N08-A and 2100 mJ L−1 in QV1.3. The shallowest wells
CSW1.4 and N08-C, by comparison, have values of
100 mJ L−1 and 32 mJ L−1 respectively (Fig. 3,
Supporting Information Tables S7 and S8). Additionally,
the deepest wells at CROMO (e.g., CSWold; Supporting
Information Table S9) are dominated by taxa associated
with sulfate reduction, such as relatives of ‘Desulforudis
audaxviator’ (11.9% relative abundance; Jungbluth et al.,
2017). The potential for AOM coupled to sulfate reduction
has also been shown in other terrestrial serpentinites. In
Oman, it is suggested that sulfate reduction coupled to
methane oxidation is an energetically feasible metabo-
lism for microbes (Miller et al., 2016), and in the

Philippines, this sulfate reduction reaction yields an esti-
mated −25 kJ mol−1 on average between all wells
(Cardace et al., 2015) which are less than the values cal-
culated for CROMO (Supporting Information Table S7).

Genes coding for the complete dissimilatory sulfate
reduction pathway to sulfide, sulfate adenylyltransferase
(sat), adenosine-50-phosphosulfate reductase (aprAB) and
dissimilatory sulfite reductase (dsrAB) are expressed in four
wells (Fig. 4; Supporting Information Tables S10 and S11).
The data demonstrate particularly elevated expression of
aprAB genes in the deepest, most saline well, CSWold,
with a Log2 fold change of 7.38 and 6.79 for apr A and B,
respectively, relative to neutral pH wells (Supporting Infor-
mation Table S12). Upon examination of the contigs, meta-
genomic data indicate that sat, aprAB or dsrAB genes are
not harboured on the same contig (Supporting Information
Table S13). A phylogenetic analysis of a key gene in this
sulfate reduction pathway, dsrB, illustrates the diversity of
organisms capable of sulfate reduction within serpentinizing
systems (Fig. 5; Supporting Information Table S14).
Through comparison by NCBI BLASTP, CROMO dsrB
genes closely match those from known sulfate-reducing
bacteria such as Desulfitibacter alkalitolerans (98.04%) and
Thermodesulfovibrio thiophilus (77.84%). The oxidative
function of dsrB is also represented in the distribution of
genes in continental ophiolites, including some wells of the
CROMO site, and is primarily affiliated with
Betaproteobacteria (Fig. 5). PhyloPythiaS+ results confirm
that CROMO contigs containing dsr closely match sulfate-
reducing members of the Firmicutes, Betaproteobacteria
and Deltaproteobacteria (Supporting Information Table S13;
Fig. 5; Müller et al., 2015; Gregor et al., 2016), and meta-
transcriptome data indicate that dsr is actively transcribed
to various extents in all wells analysed (Fig. 4).

Metagenome-assembled genomes (MAGs) created
from these data (described and reported extensively in
Seyler et al., 2020) show that the capability to mediate
different sulfur metabolisms was segregated into different
taxonomic groups. Of the most abundant organisms in
CSWold (Supporting Information Table S9), three MAGs
within the Clostridiales, related to the Candidate genus
Desulforudis, contained genes associated with the key
components of the dissimilatory sulfate reduction path-
ways, dsrAB and aprAB. Two MAGs related to the
Peptococcaceae (related to Desulfitispora) and five
MAGs related to Dethiobacter alkaliphilus contained
genes involved in thiosulfate disproportionation and sulfur
reduction (e.g., sulfur transferases) but lacked compo-
nents involved in sulfate reduction, as has been observed
in previous studies (Melton et al., 2017). This may be a
consequence of a low degree of completeness in these
bins or due to the presence of novel genetic variants.
Finally, three MAGs related to the genus Hydro-
genophaga (i.e., Serpentinomonas) and two MAGs
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within the Rhodobacteraceae had several of the key
genes involved in thiosulfate oxidation via the SOX path-
way. These organisms are presumed to mediate oxida-
tive portions of the sulfur cycle at CROMO.

Taken together, these data indicate that microbial com-
munities inhabiting brackish, hyperalkaline groundwater at
CROMO have both the genetic and bioenergetic potential
to carry out dissimilatory sulfate reduction. Members of
Deltaproteobacteria and Clostridia, among others, have
genes for sulfate reduction (Fig. 6; Supporting Information
Table S13) and may be the primary drivers of this process
in deeper wells, which parallels the predicted role of sulfur
compounds in other deep biosphere ecosystems (Chivian
et al., 2008; Osburn et al., 2014; Lau et al., 2016).

Sulfide oxidation and production of intermediate sulfur
compounds

Hydrogen sulfide (HS−) comprises a second major sul-
fur pool at CROMO, and ranges from 1 μM in shallower
wells up to 24 μM in deeper wells (Supporting Informa-
tion Table S1). Sulfide is generally more reactive than
sulfate, and the abiotic oxidation of sulfide to sulfate or

thiosulfate occurs readily at 25�C under oxic conditions
(Van Den Bosch et al., 2008; Luther et al., 2011). Thus,
sulfide is unlikely to be retained during ophiolite
emplacement, and microbial activities in the host mate-
rials are only expected to accelerate this process.
Between the lability of dissolved sulfide compounds
and evidence for active sulfate reduction indicated
through metagenomic and metatranscriptomic data
(Fig. 4), it is expected that the hydrogen sulfide mea-
sured in CROMO groundwater is mainly the result of
sustained active biological sulfate reduction.

Thermodynamic calculations show that sulfide oxida-
tion to sulfate coupled to nitrate or oxygen reduction is
generally favourable throughout the system but increases
in volumetric energy availability (mJ L−1) towards deeper
areas (Supporting Information Table S7). The HS− pro-
duced by sulfate reduction can also be partially oxidized

to intermediate species such as thiosulfate (S2O
2−
3 ) and

elemental sulfur (S�) via abiotic and biotic pathways.
Metagenomic data indicate that the metabolic potential
exists in these deeply seated fluids to oxidize sulfide to
produce sulfate and sulfur intermediates (Fig. 4;
Supporting Information Tables S10 and S11). At

Fig. 3. Millijoules of energy available per litre of fluid for a suite of sulfur reactions. Calculations were made using measured aqueous geochemistry
data in Supporting Information Table S1 for specific sulfur reactions listed in Supporting Information Table S7 within the deepest, most saline well
CSWold. [Color figure can be viewed at wileyonlinelibrary.com]
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CROMO, metagenomic data suggest that the sulfide
oxidation I pathway (featuring the sulfide-quinone
reductase enzyme, Sqr) is the dominant way by which
organisms metabolize sulfide (Fig. 4), which results in
the formation of elemental sulfur (Thorup and
Schramm, 2017) and polysulfides (Wasmund et al.,
2017). Metatranscriptomic values (reported as FPKM)
for sqr in the sulfide oxidation I pathway are 395.21,
31.97, 61.92 and 10.61 for QV1.2, QV1.1, N08-B and
CSWold respectively (Supporting Information
Table S10). At high pH, sulfide can attack elemental
sulfur to form polysulfides, which are then chemically
stable (Van Den Bosch et al., 2008; Sousa et al.,
2018). Elemental sulfur can be biologically

disproportionated into S2O
2−
3 and HS− to regenerate

these reactive components (Fig. 6). A precise description
of biogeochemical processes related to sulfur cycling in
serpentinites is clouded by the recycling and production
of intermediate sulfur compounds (e.g., thiosulfate, sul-
fite, elemental sulfur, polysulfides). However, once sulfur

intermediates are produced, a range of both chemical
and biological transformations becomes possible.

Microbial cycling of intermediate sulfur compounds

Thiosulfate (S2O
2−
3 ) is an intermediate sulfur compound

that provides an important link connecting many sulfur
metabolic pathways. Previous work in sulfur-rich anoxic
marine and freshwater sediments has shown that thiosul-
fate is key to coupling oxidative and reductive pathways
of the sulfur cycle (e.g., Jorgensen, 1990). Here, meta-
genomic data suggest a similar role in hyperalkaline
groundwater (Fig. 4). Within serpentinizing systems, thio-
sulfate is rarely discussed in studies of sulfur cycling
(Leavitt et al., 2014; Suzuki et al., 2014). Explicit mea-
surements of thiosulfate for serpentinizing systems have
yet to be performed, including in the present study. Given
the important role of thiosulfate suggested by CROMO
metagenomic data, thermodynamic calculations per-
formed across a six-order of magnitude range of

Fig. 4. The eight sulfur catabolic pathways are listed on the y-axis with their respective KEGG accessions and gene names for CROMO, Lost
City and Liguria. Metagenomic and metatranscriptomic data are plotted on the heatmap as metagenome fragments per kilobase of predicted pro-
tein sequence per million mapped reads (FPKM). Metatranscriptomes are listed next to the metagenome abundance for each site using the
abbreviation, mt. Each box contains a discrete FPKM value (listed in Supporting Information Tables S10 and S11), which is conditionally format-
ted to be colour coded by value. Intensity of a certain colour relates to the FPKM of each gene detected in a well relative to the highest FPKM
value measured within the given set of metabolic pathways. Grey fill indicates no sequences met the given criteria.
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hypothetical concentrations (1 nM to 1mM) constrain
the possible dynamics of thiosulfate cycling in this sys-
tem, similar to an approach previously applied to
hydrogen oxidation in hot springs (Spear et al., 2005).
Thiosulfate oxidation is thermodynamically favourable
across this entire range, for all oxidants considered in
our calculations. At 1 μM thiosulfate, thiosulfate oxida-
tion coupled to nitrate provides energy at values of

ΔG = −758 � 14 kJ/(mol S2O
2−
3 ), and thiosulfate oxida-

tion coupled to oxygen with energy levels equal to

ΔG = −825 �25 kJ/(mol S2O
2−
3 ) (Supporting Information

Tables S7 and S8). Microbial populations such as Ca. ‘S-
erpentinomonas’ (Suzuki et al., 2014), members of
Rhodobacterales (Tourova et al., 2013) and
Rhodocyclaceae (Meyer et al., 2007) can facilitate the
oxidation of thiosulfate to sulfate using components of
the SOX pathway. SOX is highly expressed in three

CROMO wells, and the sulfate end-product potentially
provides an energy source for the sulfate-reducing micro-
bial community.

MAG data for thiosulfate oxidation pathways discussed
here show that MAGs for Hydrogenophaga in CSWold
host the complete pathway for thiosulfate oxidation via
SOX, whereas two MAGs related to the Rhodo-
bacteraceae host partial SOX pathways (Seyler et al.,
2020). Populations within the genera Dethiobacter
(Clostridia) identified by PhyloPythiaS+ are likely to medi-
ate thiosulfate disproportionation, as these capabilities
have been recorded in recent genome sequencing and
physiological studies of these taxa (Sorokin et al., 2011;
Poser et al., 2013; Melton et al., 2017). The
3-mercaptopyruvate sulfurtransferase (sseA) and thiosul-
fate sulfurtransferase (glpE) genes encoding thiosulfate
disproportionation to thiocyanate and sulfite are detected
throughout CROMO (Fig. 4). The sseA gene is actively
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Fig. 5. A 1000-bootstrap maximum likelihood phylogenetic tree of CROMO and Liguria dsrB sequences and BLASTp reference sequences was
constructed with RAxML in ARB. Lost City dsrB sequences were present, but too short and thus could not be incorporated into the tree. Align-
ment was performed using ClustalW. CROMO and Liguria sequences are bold italic. The scale bar indicates 0.01 inferred amino acid substitu-
tions per site and bootstrap values > 50% are shown at branch nodes. [Color figure can be viewed at wileyonlinelibrary.com]
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transcribed on multiple contigs predominantly in the two
deepest and most saline wells, CSWold (71.23 FPKM)
and N08-B (188.53 FPKM), though it is ubiquitous at
CROMO. Desulfitispora has also been shown to utilize
thiosulfate, sulfite and elemental sulfur as electron accep-
tors (Sorokin and Muyzer, 2010) and may be involved
with the cycling of these compounds.
High rates of thiosulfate reduction at moderate salinities

were detected in organisms isolated from alkaline soda
lakes (Sorokin et al., 2011). At CROMO, thiosulfate reduc-
tion rates have not been determined, but the reactions
would be favourable across a wide range of possible thio-
sulfate concentrations. Thiosulfate reduction to sulfide
coupled to formate oxidation generates Gibbs energy yields

in the range of −150 � 25 kJ/(mol S2O
2−
3 ) of available

energy, and thiosulfate reduction coupled to acetate,
methane or hydrogen provides energy of ΔG = −80 to

−210 kJ/(mol S2O
2−
3 ) (Supporting Information Tables S7

and S8). Organisms may facilitate these reactions that
in turn could stimulate symbiotic networks between
organisms and promote microbial activity within this
extreme ecosystem, similar to what has been observed
in Precambrian shield subsurface environments (Lau
et al., 2016).

The thermodynamic and genomic data presented here
suggest potential for pervasive metabolism of intermedi-
ate and reduced sulfur compounds in the
serpentinization-influenced CROMO groundwater.
Throughout a hypothetical six-order of magnitude range
in concentration, thiosulfate would react with favourable
Gibbs energy change in a variety of oxidation, reduction
and disproportionation reactions (Supporting Information
Table S8). These reactions correspond to metabolic
potential associated with some of the most abundant
microbial populations at the site and could serve to
underpin microbial productivity and ecosystem structure.

Fig. 6. Schematic showing how sulfur compounds can be cycled both biotically (coloured arrows) and abiotically (dashed arrows) within the most
saline well at CROMO. Genes related to a particular metabolic pathway are noted above the corresponding arrow in matching colours, with
organisms identified in this study annotated in grey beneath certain segments of metabolic pathways. [Color figure can be viewed at
wileyonlinelibrary.com]
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It is important to note that due to the overlapping nature
of sulfur cycling reactions, there are likely more intricate
relationships occurring that keep intermediate com-
pounds at low levels and that cannot be easily detected
with the methods used here. However, the intermediate
sulfur species examined in thermodynamic calculations
and metagenomic analyses can serve to regenerate HS−

or SO2−
4 , thereby maintaining both reduced and oxidized

sulfur pools and continuing the cycle.

Potential for serpentinizing ophiolites to preserve
aspects of their marine origin

The process of ophiolite genesis and emplacement onto
continental margins serves to transport ultramafic rock,
marine sediments, organic matter and seawater to the
terrestrial environment. These effects are evident in the
sodium and chloride chemistry measured at CROMO and
several other well-studied serpentinite groundwaters
(Neal and Shand, 2002; Cipolli et al., 2004; Monnin et al.,
2014) that likely impact microbial ecosystem structure
and influence the biogeochemistry of these sites. To
investigate this, we compare CROMO (81.9 mM Cl− and
73.9 mM Na+ in CSWold) to the low-salinity, sub-aerial
serpentinizing springs of the Voltri Massif in Liguria, Italy
(650 μM Cl− and 550 μM Na+ in Rio Leone; Chavagnac
et al., 2013) and to the deep-sea LCHF located near the
Mid-Atlantic Ridge (Kelley et al., 2005). At the Voltri Mas-
sif, the ultrabasic fluids retain sulfate concentrations rang-
ing from 0.5 to 32.8 μM (Chavagnac et al., 2013), and
sulfide concentrations around 16.2–18.7 μM (Brazelton
et al., 2017). The LCHF chimneys host a gradient of
water chemistries influenced by seawater as one
endmember and hyperalkaline, hydrogen- and methane-
rich vent fluids as the other. Sulfate in these hydrothermal
fluids ranges from 1000 to 4000 μM (Kelley et al., 2005;
Supporting Information Table S2) and sulfide varies from
245 to 2880 μmol kg−1 (Lang et al., 2012). As both sites
host measurable sulfate and sulfide, a suite of metabo-
lisms related to sulfur cycling is likely within the
serpentinite-hosted communities.

At CROMO, Lost City and Liguria, normalized abun-
dances of key genes involved in sulfur cycling confirm
that microbial populations are capable of cycling sulfur
through four metabolic processes: sulfate reduction, sul-
fide oxidation, thiosulfate disproportionation and thiosul-
fate oxidation (Fig. 4; Supporting Information Tables S10
and S11). As seen through this study, at CROMO both
oxidative and reductive components of the sulfur cycle
are represented. At Lost City, where reduced hydrother-
mal fluids circulate through chimneys out to oxidized sea-
water, genes for oxidative processes, such as thiosulfate
oxidation (SOX complex; 150.02–954.83 FPKM) and

sulfide oxidation (sqr; 23.32–1281.73 FPKM at H08 site)
are abundant (Fig. 4). At LCHF, genes for sulfate reduc-
tion processes are also present (sat = 6.75–247.90-
FPKM; aprAB = 4.63–17.57 FPKM;
dsrAB = 9.53–66.98 FPKM), but at lower levels. As Ligu-
ria is a freshwater-influenced site sampled from hydro-
thermal springs, the system is less-isolated from the
atmosphere and anoxic water at depth can mix with oxy-
genated compounds near the surface. Overall, genes for
sulfur cycling at Liguria are generally lower than the peak
values at CROMO and LCHF (Fig. 4; Supporting Informa-
tion Table S10). Results from this study suggest that
there are differences in the microbial sulfur cycle between
serpentinizing systems (Fig. 4) and that these variations
are likely explained by niche-specific differences
(e.g., vigorous hydrologic flow at a hydrothermal chimney
system compared to ophiolitic groundwater) that influ-
ence the concentration and availability of sulfur com-
pounds. On the seafloor, where reduced fluids actively
vent into oxidized seawater, there is a stark chemical gra-
dient between reduced, actively venting hyperalkaline
fluids and sulfate-rich seawater that influence the micro-
bial communities and genes transcribed. In ophiolite com-
plexes, where a range of seawater volumes can be
retained and mix over a multitude of time scales, these
serpentinizing systems can range in salinity from fresh to
saline. CROMO fluids are brackish and sulfur-rich, and
Liguria fluids are lower in both salinity and concentrations
of dissolved sulfur compounds, as described above. The
varying hydrologies and impact upon fluid chemistry may
strongly influence the composition of resident microbial
communities.

The new observations from this study are supported by
recent work from other serpentinizing ecosystems.
Recent biogeochemical studies show that formate oxida-
tion, likely carried out by sulfate reducing bacteria, sup-
ports the base of the LCHF ecosystem (Lang et al.,
2018). At the Prony Hydrothermal Field in New Caledo-
nia, a hybrid between marine and terrestrial serpentinites,
sulfur-cycling organisms similar to the strictly anaerobic
Dethiobacter alkaliphilus were identified that can utilize
acetate and sugars with elemental sulfur, polysulfides
and thiosulfate, yet cannot reduce sulfate directly
(Sorokin et al., 2008; Pisapia et al., 2017; Frouin et al.,
2018). For comparison, freshwater sites such as the
Santa Elena ophiolite in Costa Rica and The Cedars in
California lack sulfate (i.e., < 5.0 μM) and to date show lit-
tle evidence of sulfur cycling (Crespo-Medina et al.,
2017). Similar to the versatility observed in carbon and
H2 cycling within serpentinite-hosted microbial
populations (Brazelton et al., 2012; Suzuki et al., 2014),
the ability to cycle sulfur compounds through multiple
pathways lends flexibility to energy production as these
systems change through time.
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Taken together, our results point towards the microbial
metabolic potential for extensive sulfur cycling within the
brackish groundwater at CROMO. The elevated concen-
trations of sulfur compounds, considerable energetic
incentive, diversity of sulfur-cycling organisms and ele-
vated sulfur-cycling gene activity collectively suggest an
important role for sulfur metabolisms in serpentinite
groundwaters. We suggest that genera, such as
Dethiobacter, Desulfitispora and the candidate genus
‘Desulforudis’ are critical to this process within the brack-
ish, sulfur-rich serpentinizing fluids. Future studies should
focus on quantifying the reactive, potentially short-lived
intermediate sulfur species in serpentinizing systems
using techniques such as high-performance liquid chro-
matography (Findlay and Kamyshny, 2017) or cyclic
voltammetry (Boyd and Druschel, 2013), and incorporate
these measurements of intermediate sulfur metabolisms
into their experimental design. We expect that intermedi-
ate and oxidized sulfur species serve as important elec-
tron acceptors in oxidant-limited serpentinizing
groundwater and play important roles in constraining the
bulk productivity of these systems. Additionally, as ser-
pentinizing ophiolites originate at the seafloor, we sug-
gest that they serve as a vector to transport sulfur
compounds and potentially sulfur-metabolizing microbes
onto the continents. This in turn can impact the biogeo-
graphic distribution, evolution and composition of resident
microbial communities. Continued comprehensive,
genome-wide comparisons in populations across a range
of serpentinizing sites will serve to further illuminate the
interplay of large-scale geologic processes and the
geomicrobiology therein.

Experimental procedures

Aqueous geochemistry

All CROMO wells (CSW, QV, N08) were directly sampled
for their biogeochemistry in July 2014. Fluids were
pumped from discrete depths via positive displacement
Teflon bladder pumps (Geotech Environmental Equip-
ment, Denver, CO, USA) to the surface, where they were
flushed through a YSI 3059 flow cell attached to a digital
YSI multiprobe (Yellowsprings, OH, USA) for pH, oxida-
tion-reduction potential (ORP), DO, specific conductance
and temperature measurements once DO stabilized.
Fluids were collected via tubing attached to the flow cell,
which allowed syringes to directly sample water pumped
anoxically from the well bottom. Aqueous samples were
preserved for anion and cation analysis as described
below, and dissolved gas (CH4, CO, H2), organic acid
(acetate, lactate, propionate, formate) and DIC quantifica-
tion according to previously published protocols in

Crespo-Medina and colleagues (2014) and Twing and
colleagues (2017).

Well water was pumped and immediately filtered
through a 0.22 μm Sterivex syringe filter (Millipore, Biller-
ica, MA, USA) into sterile 15 ml Falcon tubes (Fisher Sci-
entific) and stored at 4�C. Anions in CROMO fluids and
analytical blanks were measured using a Dionex ICS-
2100 Ion Chromatography System (ThermoScientific),
generating data for the concentrations of chloride [limit of
detection (LOD) 0.56 μM, uncertainty 2.7%], nitrite (LOD
2.17 μM, uncertainty 3.15%), nitrate (LOD 1.61 μM,
uncertainty 2.2%), bromide (LOD 1.25 μM, uncertainty
4.0%), fluoride (LOD 1.05 μM, uncertainty 6.5%) and sul-
fate (LOD 1.56 μM, uncertainty 0.41%).

Hydrogen sulfide concentrations were determined via
colorimetry according to previously published protocols
for the methylene blue method (Cline, 1969; Joye et al.,
2004; Weber et al., 2016; 1.0 μM LOD). Fluid samples
(45 ml) from each well were preserved immediately in the
field using 600 μl of a 20% zinc acetate solution to pre-
cipitate volatile sulfide in the form of solid zinc sulfide.
Samples and standards were immediately run in parallel
to a blank at 670 nm on an UV-1800 Shimadzu UV spec-
trophotometer at Michigan State University.

Cations were preserved in the field by addition of
600 μl of a 20% zinc acetate solution to 45 ml of sample
fluid and stored at 4�C until analysis. Values reported
(Supporting Information Table S1) are comparable to
CROMO samples preserved in nitric acid (Sabuda and
Cardace, unpublished data). Cation samples were sent
to the Analytical Geochemistry Laboratory at the Univer-
sity of New Mexico for analysis and immediately run
using an inductively coupled plasma optical emission
spectrometer (ICP-OES) (Fig. 1). Sodium and chloride
values are reported from serpentinizing systems around
the world, including those not mentioned in the text, but
are referenced here (Culkin and Cox, 1966; Barnes et al.,
1978, 2015; Marques et al., 2008; Blank et al., 2009;
Suda et al., 2014; Cardace et al., 2015; Meyer-Dombard
et al., 2015; Seyfried et al., 2015; Boschetti et al., 2017).

Gibbs energy calculations

Gibbs energy values for 18 potential energy-yielding
reactions involving the various states of sulfur speciation
(Supporting Information Tables S7 and S8) were calcu-
lated based on the measured fluid compositions
(Supporting Information Table S1). Formate and acetate
values were estimated based on previous sampling trips
for these calculations and estimated as 1.0 μM if data
were not available for a particular well. It is critical to note
that thiosulfate concentrations were not directly mea-
sured and instead were estimated at 1.0 nM, μM and mM
for this study (Jorgensen, 1990; Thamdrup et al., 1994).
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Sensitivity calculations were performed to span three-

orders of magnitude, 1.0 nM, 1.0 μM and 1.0 mM S2O
2−
3 .

Speciation calculations were performed to determine
activities of dissolved species for each sample using
Geochemist’s Workbench© (Aqueous Solutions LLC,
Champaign, IL, USA). The amount of energy available
from each metabolic reaction was calculated according to
previous work by Amend and Shock (2001):

ΔGr =ΔG0
r +RTlnQ ð1Þ

where ΔGr is the Gibbs energy of reaction, ΔG0
r is the

standard Gibbs energy, R is the universal gas constant,
T is the temperature in Kelvin and Q is the reaction quo-
tient of activities of the compounds involved in the reac-
tion. The reaction quotient incorporated activities
calculated from the speciation models and reaction stoi-

chiometries. ΔG0
r values for the selected reactions were

obtained from Amend and Shock (2001). Finally, the
amount of energy available in each parcel of fluid was
estimated by multiplying ΔGr by the concentration of the
limiting reactant divided by its stoichiometric coefficient
(McCollom and Shock, 1997).

Extraction of DNA and RNA

In concert with aqueous geochemistry and cell enumera-
tion preservations, 4 L of fluids from CROMO wells were
pumped from each well bottom and immediately filtered
through Sterivex 0.2 μm filter cartridges (Millipore, Biller-
ica, MA, USA) using a portable peristaltic pump. Car-
tridges were kept on ice during filtration, immediately
stored in liquid nitrogen upon completion, shipped to the
home laboratory and stored at −80�C until processing.
Total genomic DNA extractions were completed as previ-
ously described by Brazelton and colleagues (2017),
Crespo-Medina and colleagues (2017), and Twing and
colleagues (2017) and briefly described here. Freeze/
thaw cycles and lysozyme/Proteinase K treatment were
performed to lyse cells, followed by purification with
phenol-chloroform, precipitation using ethanol and purifi-
cation using QiaAmp (Qiagen, Hilden, Germany) columns
according to manufacturer instructions. A Qubit 2.0 fluo-
rometer (ThermoFisher) was used to quantify extracted
DNA using a Qubit dsDNA High Sensitivity Assay kit.

Extractions for RNA from CROMO wells were per-
formed as described previously with slight modifications
(Lin and Stahl, 1995; Macgregor et al., 1997). Briefly, fro-
zen 0.2 μm Sterivex filter cartridges were broken open,
cut into four equal pieces and divided into two screw-cap
Eppendorf tubes containing phenol, 20% sodium dodecyl
sulfate, 5× low-pH buffer, and 0.2–0.5 g baked zirconium
beads. Samples were bead-beaten for 3 min, heated in a

60�C water bath for 10 min, bead beaten again for 3 min
and centrifuged at 4�C and 18,407 × g to separate
phases. Supernatant was transferred to a fresh
Eppendorf tube and chilled. 1× low-pH buffer was added
to the remaining sample, and bead-beating was
repeated. Supernatants were combined, and phenol, 1:1
phenol : chloroform and chloroform were added in series
with vortexing and centrifugation in between. Between
steps, aqueous phases were transferred to clean
Eppendorf tubes. The final aqueous phase was trans-
ferred to a clean Eppendorf tube with additions of ammo-
nium acetate, isopropanol and magnesium chloride
before vortexing and incubation at −20�C overnight.
Samples were centrifuged for 30 min at 4�C, washed with
ethanol and dried under vacuum before suspension in
RNase-free water and storage at −80�C until analysed.

Bacterial 16S rRNA amplicon sequencing and data
analysis

Purified DNA from CROMO wells was submitted to the
Genomics Core Facility at Michigan State University for
processing using an Illumina MiSeq instrument. The V4
region of the 16S rRNA gene (515F/806R primers) was
amplified using dual indexed Illumina fusion primers
(Kozich et al., 2013). An Invitrogen SequalPrep DNA Nor-
malization Plate was then used to normalize and pool the
products. The pool was loaded on an Illumina MiSeq v2
flow cell and sequenced using a standard 500 cycle
reagent kit after library quality control and quantitation
was performed. Illumina Real Time Analysis (RTA) soft-
ware v1.18.54 performed base calling. The RTA output
was demultiplexed and converted to FastQ files using
Illumina Bcl2fastq v1.8.4.

USEARCH 8 (Edgar, 2010) was then used to filter and
merge paired-end sequence reads. Additional quality fil-
tering was performed to remove sequences with ambigu-
ous bases and more than eight homopolymers using
mothur (Schloss et al., 2009), and chimaeras were
removed with mothur’s implementation of UCHIME
(Edgar et al., 2011). The sequences were pre-clustered
with the mothur command pre.cluster (diffs = 1), which
reduced the number of unique sequences from 362,039
to 211,847. The pre.cluster step removes rare sequences
most likely created by sequencing errors (Schloss and
Westcott, 2011). These pre-clustered sequences were
used as operational taxonomic units (OTUs) for all down-
stream analyses.

Sequences were aligned to the SILVA SSURef align-
ment (v132), and taxonomic classifications were
assigned using mothur (Pruesse et al., 2007; Schloss
et al., 2009), as described in Twing et al., 2017. The
counts for each OTU were normalized to the total number
of reads for each sample. Following this, normalized
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counts were averaged for wells that had more than one
representative sample to negate statistical issues related
to pseudoreplication (Kuhar, 2006). In order to perform
Pearson correlation analyses, the data were then filtered
to retain OTUs that made up greater than 1% of any
given sample which resulted in 82 unique OTUs to be
used specifically for statistical analyses. The resulting
82 OTUs were combined into a data table along with
geochemical data collected during sampling to analyse
relationships between abundant species and environ-
mental parameters.

Statistical information

A two-tailed Pearson correlation coefficient matrix was
computed with the rcor.test function in the R package ltm
(Rizopoulos, 2006) using 16S rRNA OTU relative abun-
dances > 1% and aqueous chemical data for all CROMO
wells. Correlation coefficients were filtered to remove
values that did not have p-and q values of 0.05 or less.
Pairwise correlations that fit these criteria were included
in further analyses and used to guide investigations
between environmental parameters and specific OTUs
(Supporting Information Tables S4–S6).
The non-metric multidimensional scaling plot was cre-

ated using count data for all 16S rRNA OTU relative
abundances in each sample and the Morisita-Horn dis-
tance metric in R (R Core Team, 2019) (v.3.5.1) with the
Phyloseq package (McMurdie and Holmes, 2013). With
this metric, statistically significant environmental parame-
ters (p values ≤ 0.05) were subsequently plotted as over-
lying vectors in R using the vegan package (v. 2.5–3)
(Oksanen et al., 2018).

Metagenomic sample preparation, sequencing and data
analysis

Samples were submitted to the Joint Genome Institute
(JGI) for metagenomic and metatranscriptomic sequenc-
ing on an Illumina HiSeq2000 instrument. At the JGI, a
Covaris LE220 ultrasonicator was used to shear DNA
samples into 270 bp fragments, and size selection was
performed using SPRI beads. DNA fragments were end-
repaired, A-tailed, and ligated with Illumina-compatible
adapters with barcodes unique for each library. KAPA
Biosystem’s next-generation sequencing library qPCR kit
and Roche LightCycler 280 RT PCR instrument were
used to quantify libraries. Ten library pools were assem-
bled and prepared for Illumina sequencing in one lane
each. Clustered flowcells were produced using a TruSeq
paired-end cluster kit (v3) and Illumina’s cBot instrument.
The Illumina HiSeq2000 instrument was utilized with a
TruSeq SBS sequencing kit (v3) and a 2 × 150 indexed
run recipe to sequence the samples. The raw sequence

reads were trimmed by the JGI with a minimum quality
score cutoff of 10 to remove adapters. These trimmed
reads from CROMO wells were previously reported by
Twing and colleagues (2017), but additional quality-
filtering and a new assembly, distinct from the JGI
assembly reported by Twing and colleagues (2017) was
performed for this study.

The trimmed reads from the JGI were subjected to an
additional quality screen to trim 30 adapters with cutadapt
v. 1.15 (Martin, 2011), to remove replicate sequences,
and to trim sequences again with a threshold of 20 along
a sliding window of 6 bases with qtrim v. 2.0.2 (Shrestha
et al., 2014). All CROMO metagenomes and meta-
transcriptome were pooled together for a master CROMO
assembly computed with Ray Meta v.2.3.1 (Boisvert
et al., 2012), and short reads were mapped to the assem-
bly using Bowtie2 v.2.2.6 (Langmead and Salzberg,
2013). Phylogenetic affiliation of contigs was assigned
using PhyloPythiaS+ (Gregor et al., 2016), and the Pro-
kka pipeline (Seemann, 2014) was used for gene predic-
tion and functional annotation of contigs. The arguments
– metagenome and – proteins were used with Prokka
v.1.12 (Seemann, 2014) to indicate that genes should be
predicted with the implementation of Prodigal v.2.6.2
(Hyatt et al., 2010) optimized for metagenomes as
described by Twing et al., 2017. All details for MAG
assembly and datasets are reported in the methods of
Seyler and colleagues (2020).

Predicted protein-coding sequences were annotated by
searching the Kyoto Encyclopedia of Genes and Genomes
(KEGG) (Ogata et al., 1999) release v. 83.2 within Prokka.
HTSeq v.0.6.1 was used to calculate predicted protein
abundances (Anders et al., 2015), and the abundances of
predicted protein functions in all CROMO metagenomes
and metatranscriptomes were normalized to predicted pro-
tein size and metagenome size. Data reported here are in
units of metagenome fragments per kilobase of predicted
protein sequence per million mapped reads (FPKM).
Detailed documentation of all metagenomic data
processing is provided on the Brazelton lab’s website
(https://baas-becking.biology.utah.edu/data/category/18-
protocols), and all custom software and scripts are avail-
able at https://github.com/Brazelton-Lab.

Phylogenies of genes of interest were constructed by
first aligning predicted coding sequences against the
NCBI NR database (v. 2017-06-07), and using the top
two BLASTP protein hits for each predicted sequence.
BLASTP hits all had E-values > 1e−136. The lowest per-
cent identity for the top two hits was 56.6%
(PROKKA_587390) and only 4 hits had percent identities
< 75%. The highest percent identity was 98.6%
(PROKKA_192589), and 15 hits had percent identities
> 90%. The remainder fell between 70% and 90%.
Predicted protein sequences and their respective top two
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BLASTP hits were aligned using Clustal Omega (Sievers
et al., 2014) to produce a FASTA file for use in creation
of phylogenetic trees. A 1000-bootstrap maximum likeli-
hood phylogenetic tree of dsrB was computed with
RAxML in ARB (Ludwig et al., 2004) using the Dayhoff
substitution model. CROMO, Lost City and Liguria dsrB
sequences and their top two BLASTP reference
sequences were aligned using the ClustalW protein align-
ment (slow and accurate) option in ARB. Sequences
were then filtered to equal lengths, and sequences less
than 352 amino acids in length were excluded. This cutoff
eliminated Lost City sequences. The scale bar indicates
0.01 inferred amino acid substitutions per site, and a
bootstrap cutoff value of 50% was utilized.

Sequence data availability

The 16S rRNA sequence data from CROMO are publicly
available in the NCBI Sequence Read Archive under project
number PRJNA289273. CROMO metagenome sequences
were previously published by Twing and colleagues (2017)
and are publicly available in the JGI IMG/M database under
the project IDs: 1021918, 1,021,921, 1,021,924 and
1,021,927; and in the MG-RAST database under the follow-
ing sample IDs: 4569549.3, 4569550.3, 4569551.3 and
4569552.3. CROMO metatranscriptome sequences are pub-
licly available in the NCBI Sequence Read Archive under the
following Accession IDs: SRX3339504, SRX3339503,
SRX3339089, SRX3331179, SRX3331177, SRX3330963,
SRX3330943 and SRX3330753. Metagenomic data from
Liguria, Italy and the Lost City Hydrothermal Field were publi-
shed previously by Brazelton and colleagues (2017) and
Lang and colleagues (2018) respectively.
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